ЭЛЕМЕНТЫ ЗОЛОТЫХ ПРОПОРЦИЙ

Откуда возникли представления о делении отрезков в крайнем и среднем отношениях, позволяющем получать золотое число Ф и пропорцию, названную Леонардо да Винчи «золотым сечением», нам неизвестно. Но уже в Древней Греции на основе золотого числа Ф - 1,618 посредством последовательного умножения (восходящая ветвь ряда) и деления (нисходящая ветвь ряда) базисной единицы на число Ф получали ряд из 11 чисел, имеющий название «золотого ряда», бесконечного в обе стороны:
...; 0,034; 0,056; 0,090; 0,146; 0,236; 0,382; 0,618; 1,000; 1,618; 2,618; 4,236; ... и т.д.

Каждое число этого ряда представляет собой иррациональную (бесконечную) последовательность цифр, округленных до 4 знаков. Каково собственное значение этих чисел и к какой геометрии они относятся — неизвестно тоже, а потому числа эти стоят на обочине и геометрии, и физики.

Однако уже древние греки поняли, что есть в этих числах какая-то особенность, проявляющаяся в том, что объекты, построенные с учетом золотых пропорций, обладают высокими эстетическими качествами и благотворно влияют на человека. И в наше время обнаруживается, что все процессы, связанные с жизнедеятельностью живых организмов, в той или иной степени связаны с теми же золотыми числами, что и обусловливает все более интенсивное изучение этих связей, но, как это ни странно, не свойств и геометрии самих чисел. А они настолько удивительны, что следовало бы поподробнее познакомиться с ними. Один из элементов этих свойств — образование золотого прямоугольного треугольника. Об этом наше изложение.

Прежде всего рассмотрим, что же дает нам деление отрезка в крайнем и среднем отношениях (рис.7). Отмечу, что в постановке задачи говорится о делении одного отрезка на две неравные части а и с так, чтобы весь отрезок (а + с) относился к большей части с, как часть с к меньшей части а. Запишем это отношение:

а + с с (1)
------- = --
с а

Пропорция (1) носит название золотой пропорции.

Отметим, что в данном случае подразумевается конечная в рациональных числах длина отрезка (а + с), кратная некоторому измерительному инструменту. В условии задачи не говорится о невозможности его целочисленного или дробного рационального деления и о нерациональности двух (?) образующихся при делении отрезков.

Это очень важная оговорка. Она подтверждает не преднамеренный, а как бы вероятностный или даже случайный характер деления. Проверим эту случайность. Решим (1), заменив отношение с:а на b:

b = с:а. (2)

Подставим (2) в (1), получим квадратное уравнение:

b2-b-1=0, (3)

решая которое, находим величину b:

b1 = (1 + 5)/2 = Ф = 1,61...; (4)
b2 = (1- 5)/2 = - 1/Ф = - 0,61...

1917964996325658.html
1917993763518462.html
    PR.RU™